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We review the notion of effective potential for stochastic processes and discuss 
its possible applications. We calculate this function up to first order in a 
parameter measuring the intensity of the noise for a general nonlinear system. 
The result is applied exhibiting a transition induced by weak noise. 
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1. I N T R O D U C T I O N  

In many realistic s i tuat ions macroscopic  systems can be modeled  by M a r k o v  
processes for some macrovariables .  This descr ipt ion can be through a master  
equat ion or  through stochastic differential equations.  Here we shall limit 
ourselves to the second description,  but  our  methods  can be generalized 
directly to master  equations,  as we have a l ready discussed in some simple 
cases, c~) Fur thermore ,  we shall not  consider  inhomogeneous  fluctuations in 
space. O u r  discussion will be l imited to equat ions for n macrovar iab les  
q = ( q ,  .... q,,) of  the form (sum over repeated indices is to be unders tood  
from now on) 

(l,,(t) = B/,(q(t)) + ~ a~/(q(t)) ?.J(t) (1) 

where ( ~ ( t )  ..... ~ k ( t ) )  is a set of  Gauss ian  white noises with zero mean 
value and 6-correlated with correlat ions (~J( t )  ( k ( t ' ) )  = cJk6( t  - -  t ' )  and 1"/is 
a pa ramete r  ~aeasuring the intensity of  the noise. Al though ord inary  
stochastic differential equations,  in contras t  to par t ia l  differential equa- 
tions, have a unique s ta t ionary  probabi l i ty  and a unique mean value for 
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the macrovariables, one can have metastable states represented by maxima 
of the stationary probability. The problem of the appearance of these local 
maxima, their number and location, and how they change when the 
parameters of the system change is what we want to consider here. In 
general the stationary probability is not accessible and no systematic 
method of calculation is available. In the case of weak noise [small J? 
in (1)] the method of the nonequilibrium potential pioneered by Graham 
and collaborators 12~ can be used, but it can present some difficulties 
especially in the case when one has more than one maximum 13'4~ and this 
in spite of recent successes of the method in local expansions for extended 
systems.~5" 6) 

We shall explore here the possibility of using another function, the 
effective potential, which has the property of being minimal for the unique 
mean value. However, if the effective potential is calculated as a power 
series in r/, which is always possible, it presents minima for the mean values 
of metastable states (in this case the stationary probability has several local 
maxima). The use of this function was proposed by Graham r and recently 
it has been used by Bonilla. ~8~ Let us explain precisely what we understand 
by a metastable state. This notion is associated with local maxima of the 
stationary probability Pst(q) and with each maximum we associate a 
metastable state [we shall consider here only the case where Pst(q) is 
maximal at points and not in curves or surfaces]. Suppose Ps,(q) has two 
local maxima at the points (b'l, b_,) with escape times r~ and T2, {9) then a 
realization of the stochastic process which starts near enough to b'l at time 
zero fluctuate around a mean value bj for a time t of the order of r~ and 
then jump to the second metastable state and fluctuate around a mean 
value b2 for a time of the order of r2 and then come back to the state, 
starting again as at time zero. The quantities dibj = b j - b j  will be of the 
order of the fluctuations and we shall have a similar situation if we have 
more than two local maxima. The perturbative effective potential is a func- 
tion U(q) represented by a series in r /o f  the form 

U(q) = Uo(q) + r/Ul(q) + ~12 U,_(q) + -.- (2) 

in which every term U~(q), ~:>0, can be calculated in a systematic way 
which corresponds in fact, as we shall see in Section 2, to expanding first 
in r/ and then taking the limit t o ~ - o o ,  where to is the time at which we 
impose an initial condition when we solve (1). This function U(q) has the 
property that the n equations 

aU(q) 
= G~(q)=0, ~=I ..... n (3) 
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determine the mean values (b~ ..... b,) in the possible metastable states in 
the following sense: if G=(bk)=0, k =  1 ..... m, and U(bk) is a local mini- 
mum, then bk is a mean value. Moreover, each bk is in correspondence with 
a b~ such that p~t(b~) is a local maximum. 

These properties are direct consequences of the definition of U(q). Let 
~(J ;  r) be the generating functional for a constant time-independent source 
J of the process (1) with initial condition q(t 0) = ao defined by 

:~(J;r )=(exp( j" f rd tq . ( t ) ) )  (4) 
\ r/ :~o (~,oo) 

where r = T - t o  and 2(0; r ) =  1. We write 2 (J ;  r ) =  exp[(1/q) w(J, r)]  and 
we assume that the following limits exists: 

lim q- In 2(J;  r) = ~v(J) (5) 

In perturbation theory it exists at each order and then one has that 
w(J, r) --* r~i~(J), when r--* m, and the limit is independent of ao in a sense 
which will be discussed later. The function U(bk) is defined as the Legendre 
transform of ~(J)  by the formulas ( J . q  = J/,q.) 

U(q) + ~P(J) = J" q (6) 

Ot~(J) OU(q) 
O J,, = q"' Oq, = J" (7) 

In order zero in r/ we shall see that for each local attractor of the deter- 
ministic system O/,=B,(q) associated with (1) we can invert the first 
equation in (7) to express J ,  as a function of q for J in a region @1 around 
J = 0 to which will correspond a region N2 of variation of q containing the 
attractor. Once this is done there is no more problem with the inversion of 
(7) in higher orders and the important point is that the analytic form of the 
function U(q) calculated in this way will be independent of the initial 
attractor. This procedure will generate a function U(q) which will be 
convex in each of the regions ~2" From (7) and the definition of ~(J ;  z) we 
see that at J--" 0 the derivative O~(J)/OJ~ takes the value 

0~(J)  q=(t)l~ o~ = q~ (8) 

since (q~(t))~_ ~ = r is the time-independent mean value in the station- 
ary state of the process (1). In fact ~]= will be the component ~ of one of 
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the mean values bk discussed above. The reciprocal relation of (8), i.e., the 
second equation in (7), is then the fundamental property (3) of the effective 
potential. The property that {~} is a minimum of U(q) is a immediate 
consequence of the fact that the matrix 

O2U(q) 
Oq.,, Oq,, , 

is positive definite. 
One can also use a second function V(p, q) of 2n variables (p, q ) =  

(p~...,p,,, q, ..... q,,) from which U(q) can be obtained by a simple replace- 
ment. The calculations done with this function are simpler in the applica- 
tions and we shall also call it the effective potential. It is also represented 
by a series in r/, V= V o + t I V  ~ +r/2V2+ ..., and has the property that the 
n equations 

0V(p, q) 
Opt, p=o - F ' ( q )  = 0 (9/ 

determine the mean values in the possible metastable state as follows: 
F~(b) = 0  implies G , ( b ) = 0  [see (3)] and if b is a local minimum of U(q), 
then it is a mean value in a possible metastable state in the sense explained 
above. This function is also defined as a Legendre transform. Consider the 
process defined by (1) after replacing Bi,(q) --* Bi,(q) -J~*, where J* ,  where 
J*  is a real constant vector and let ~(J ,  J*; 3) be the generating functional 
for this new process defined by 

Z(J, J*; z) = exp \ r/ (~,~o) 

with the same notation as befoe and now ( . . . ) s*  stands for the average 
with respect to the new process. We write again 2 ( J , J * ; r ) =  
exp[(1/r/) I~'(J, J*; ~)] and with the same assumption concerning the limit 
r ~  0o [see (5)] we have that I,V(J, J*; v)=rI,V(J, J*) in that limit and 
V(p, q) is defined as the double Legendre transform of ~'(J,  J*)  with 
respect to (J, J*), 

V(p, q) + I~(J, J*) = J .  q +  J * .  p ( I I )  

Oil(J,  J*) ~W(J, J*) 
O J,. q ~' O J *  P ~ (12) 
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We shall calculate explicitly here (I)V(p, q)= Vo(p, q)+r/V~(p, q) (we use 
from now on the notation t k f = f o  + rlf~ + . . .  + rlkfk for the first k term of 
a series in r/), i.e., the leading term and the first correction. For U(q) the 
corresponding approximation c~)U(q) = Uo(q) + r/Ul(q) is related to I I)V by 

~l)U(q) = ~l )V(pl ' = g~vB,,(q), q) (13) 

where g~,(q) = a~(q) = tr/~(q) ciJa~(q). The result is 

Vo(p, q) = p ~ , B v ( q )  - ~: gl, v(q) Pt, P; (14) 

V , ( p , q ) = � 8 9  ~ 2j(p, q)) (15) 
j=l 

where T r L  stands for the trace of the (n•  matrix with elements 
L , v = ~ B ~ , ( q ) - p ~ a , , g ' ~ ( q )  and the {2j(p, q)} are the eigenvalues with 
positive real part of the linear Hamiltonian system for the variables (P, Q) 
generated by the quadratic Hamiltonian h(P, Q) given by 

h(P, Q) ~gm'(q) P , , e~+L, , , (p ,q )e , ,Q~+�89  ~ = - _  U~,,.(p,q) Q,,Qv (16) 

Ui (l)~n ,,,~., q) =--p~Ou~B~(q) - ~p~ppO,,~g~/~(q) (17) 

In order to clarify the concepts we have introduced we give a simple 
example. Consider instead of (1) the one-variable system 

(l= B( q) +.v/~ ~( t) (18) 

with ~(t) a 0-correlated white noise of zero mean. The effective potential 
~J V(p, q) is here (primes denotes derivatives with respect to the argument) 

1 , rl {B,(q)+[B,(q)2+pB, , (q)]~/2 } (19) '~V(p ,  q ) = p B ( q ) - - ~ p - + ~  

The mean value q is unique for this stochastic process and consequently 
Eq. (9) should have a unique solution. Let us consider the case in which 
the deterministic system q = B ( q )  associated with (18) has two stable 
attractors, for example, if B ( q ) = p q - q  3, p > 0 ,  with stable fixed points 
+x//p. If we construct a perturbation expansion for the mean value in the 
stationary state as a series in r/ we know c~~ t~l that we shall be able to 
construct two series (q(t))-+ = ___[x/~+O(r/)] which correspond to two 
metastable states with an exponentially long escape time exp(b/r/), b > 0, 
which tends to infinity when r /~  0. This expresses the fact that the deter- 
ministic system ( l = p q - q  3 can go to x/~ or - x / ~ ,  depending on the 
initial condition. This fact should appear in the perturbative V(p, q), and 
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Eq. (9) expanded as a series in t/should have two roots corresponding to 
__ [ v / p +  O(r/)]. This is easily verified from (19), since 

p=O ~lA"(q) 8(~)V(P' q) =A(q)  + 4  0 (20) 
8p IA'(q)l 

admits the two solutions _+ [x/~-~(~/ / / t  2) + 0(I/-')]. The function (l)U(q) 
in this case is 

') 'U(q) = '))V(p = B(q), q) = 12 B(q)'- + ~ { B'(q) + [ if(q)'- + B(q) B"(q) ] ,/2} 

(21) 

and the equation 8())U(q)/Oq=O [see (3)] will give again the previous 
result.(12) 

One usually speaks of a noise-induced transition if, when varying the 
noise intensity, there is an essential change of psi(q), (~3) for example, Psi(q) 
changes from having one maximum before the transition to several maxima 
after. Another situation which we can call a noise-induced transition is a 
deterministic system with only one global asymptotically stable attractor 
and which acquires, when we add noise of intensity r/, a stationary prob- 
ability with more than one maximum. If this happens for arbitrary small r/ 
at least for some region of variation of the other parameters, we shall speak 
of a transition induced by weak noise, an example of which is given in Sec- 
tion 3. It appears then that in the two cases mentioned above the effective 
potential V(p, q) can be a useful tool, since the solutions of Eq. (9) are in 
correspondence with the maxima of P,t(q) [when they correspond to local 
minima of U(q)]. Moreover, the perturbative V(p,q) can always be 
calculated as a series in powers of r/in a systematic way and this is an an 
advantage with respect to the use of Psi(q), where the expansion 

P,t(q) =exp[  -- 1 [r/)(~bo(q)+ ll<~,(q) + -.-)] 

in which ~o(q) is the Graham nonequilibrium potential, needs boundary 
conditions on ~o(q). The conditions one imposes are that ~bo(q) have local 
minima in the attractors of the deterministic system, since then ps,(q)= 
e x p [ - ( l / r / )  ~o(q)] will have there local maxima. But in the kinds of situa- 
tions in which we are interested the maxima of P~t(q) are created by the 
noise and we cannot impose the previous condition (this is the situation of 
the example of Section 3). Once we have determined the mean values using 
the effective potential, we can yse this information as boundary conditions 
for ~o(q) and in this sense the effective potential is complementary to the 
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nonequilibrium potential, which can then be calculated, s we shall illustrate 
in a fothcoming paper. 

The expansion of V(p, q) in power of v/will be especially relevant for 
a weak noise transition since this phenomenon can only arise from the 
higher order corrections to V 0 and this is the reason fo presenting here an 
explicit formula for the first V~(p, q). In fact some reflection on the problem 
leads to the conclusion that a situation in which a weak noise transition 
can arise is when the function B,(q) in (1) is of the form B~,(q)= 
A~,(q) + v/a~,(q), where the parameters in A~,(q) and a~,(q) are of order one 
with respect to P7 '~ 1 [ we shall write O(1) in what follows ], since then the 
term v/a~,(q) will contribute to Vt as well as the noise term. In Section 2 we 
calculate up to first order in r/ the effective potential for a general system 
modeled by Eq. (1). The higher order terms can be calculated with similar 
techniques, which we shall present elsewhere. The construction of the effec- 
tive potential done in Section 2 is presented in a different form with respect 
to the present section. The equivalence is proved in detail in Appendix C, 
where we also discuss carefully the absence of global convexity for the per- 
turbative effective potential and the reason why this property is lost in our 
calculation. In Section 3 we use the expression obtained for the effective 
potential to study models exhibiting weak noise transitions. At the end of 
the section we justify our calculation with a critical discussion of its 
validity, which shows clearly how the weak noise transition arises and how 
the effective potential is modified in this situation. Appendix A is devoted 
to some technical problems related to the calculation of V~(p, q), while in 
Appendix B we present an alternative discussion of the models of Section 3 
involving an approximation to the stationary probability and which con- 
firm the discussion based on the effective potential. 

2. C A L C U L A T I O N  OF T H E  E F F E C T I V E  P O T E N T I A L  

We consider a system modeled by a set of 17 stochastic differential 
equations (1) with B,,(q) = A,,(q(t)) + r/a~,(q(t)), 

4,, = A~,(q(t)) + vla,,(q(t)) + x//~ a~.(q(t)) ~J(t) (22) 

We interpret ttiese equations in the Ito sense, which is no restriction, since 
if this is not the case one can always transform them to the form (22). We 
shall make our calculations using an equivalent definition of the effective 
potential. The equivalence with the previous definition will be discussed 
in Appendix C. The generating functional of correlation and response 
functions is given by c14) [J~,(t) and J~*(t) are real source and ao is a deter- 
ministic initial condition] 
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Z [ J ,  J * ]  

r 

= J~,~ol ~q ~p 

x e x p { i f , ~ d t [ p , , G ( t ) - F I ( p ( t ) , q ( t ) ) - ~ i J , ( t ) q ~ , +  

• ~(q(t0) - a0) (23) 

where H = pj,(A, + ha.3 - ~i -~j .... . . . .  ~_ ,is P~,Pv, y(0) stands for prepoint  discretiza- 
tion, r and we use square brackets in 2 [ compare  with formula ( I0 ) ]  to 
indicate that  it is a funtional of (J ( . ) ,  J* ( . ) ) .  We shall often omit  y(0) in 
what follows since we shall almost  always use this discretization, which 
defines (23) as the limit N ~  o~ of IN, 

]-[ dq'"' l-[ 2~ 
p = l  i = 1  j = l  

N + I I A q ~ , ,  j i ] 
x e x p i e  ~ '  p,,j FI(pj, qj_l) J,,(tj)q,,j+J,*,(tj)p,,,j (24) 

j = l  ~: - - ~  ' 

with tj = to +je, tN+ l = T, qo = r dq~,j = q~,.i-- q , J -  1, and identifying 
q,4=q,(t~),  p , j=p~,( t j ) ,  we see that the integral in the argument  of  the 
exponential  in (23) has the corresponding quanti ty in (24) as a Riemann 
sum. One has Z [ 0 ,  J * ]  = 1 and we define 

j = l  

--G,,.,,,(/tl, t~;...;p,,, t,, Iv1, t',;...; v .... t',,,I J , J*)  

= f ~ q  ~p  f i  q~u(t:)fi ip,,,(t~) 
j = l  I = 1  

r i 

We shall also use for these functions the notat ions 

(q, , ,( t l)  �9 - �9 q~,.(t,) ip,.,(t'l).., ip,..,(t',,,))tg.s*, 

The functions G,.o(Pl,  tl ;...; p,,, t,, I 0, J * )  are correlation functions of 
the process defined by 

q,, = A,,(q(t)) + qa,,(q) -- J,*(t) + x/~ ay(q) ~J(t) (26) 
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and when Hj*( t )=0,  i.e., for the process (22), we shall simply write 
(q~,,(t~)... q~,,(t,,)) for these functions. We put 

ff/[J, J*  ] = ~/In 2 [ J ,  J* ], ~ [ 0 ,  J* ]  = 0  (27) 

6 ~  1 
M,,(t) = 2  G,.0(/~, t l J, J * ) =  Q,,(t) (28a) 

617V 1 
M,*(t) = 2  Go.,(~, t I J, J*)  = P,,(t) (28b) 

The functions t~ ...... are linear response functions since 

G,,,.,,,(ttl, t, ;...;/t,,, t,, I v,, t'l ;...; v,,, t', J J, J* )  

6" 
-M,,*(t'~)...6J,*,,,,(t;,,) G,,.o(tL,, t~...;/~,,, t,, I J, J*)  (29) 

For J = 0 the functions (~ .... are correlation functions of the process defined 
by (26) and then (29) shows that (~ ..... gives the response of the correlations 
to variations of the external sources Jp( t ) .  

One easily shows that 

Go.,,(Vl, t'~;...; v .... t',, 10, J * ) = 0  (30) 

We define the functional Legendre transform P[P( . ) ,  Q( .  )] of the func- 
tional ff '[J(.  ), J *(. )] by 

T 

F[P ,  Q] + I.T'[J, J* ]  = f ,  dy [Js,(t) Q , , ( t ) + J * ( t )  P,,(t)] 
0 

(31) 

together with (28a), (28b). Then 

6T'[ P, Q] 6I ' [P ,  Q] 
6Q,,(t) J,,(t), 6P,,(t) J*( t )  (32) 

When d = J *  = 0  one has 2 [0 ,  0] = I, I,V[0, 0] =0,  and from (25) we have 
[see before (26) and (30)] 

6 I.~'[ J, J * ]  
J=S* 66J~t ( t J -S*-O = 

~--~,(~ =o = ( q , , ( t ) ) ,  _ _ 0 ( 3 3 )  
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where <q/,(t)> is the mean value of the process defined by (22). From (31) 
we obtain F'[P, Q] 10 =0,  where the notation means that we evaluate at 
P(. )=p ,  Q( t )=  (q(t)>. We can then expand the functional P in a Taylor 
series around P(. ) = 0, Q(- ) = < q(. ) >. This expansion starts with quadratic 
terms since/~1o=0 and from (28) we see that 

8P = 
0 

gO,,(t) o 3P--~,(t) o 

(J = J *  = 0  corresponds to P(. )=  0, Q(-) = (q(t)> in the Legendre trans- 
form]. We have 

PIP(-),  Q(. )] 

1 I r dtj 
= ~" n! m! n + m > ~ 2  to i =  1 "= 

X F n . m ( f l l ,  t l ; ' " ;~ lrn ,  tn  I I l l ,  t'l...; v,,, t',) 

x [-I [Q,,,(ti)-(q/,i(ti)>] f i  P,,~(t;) (34a) 
i = l  j = l  

F',.,,,(Itl, tl...;~,, t, I vl, t'l;...; v,,, t',) 

(~ m 0 ,=~ ~/~[P, Q] (34b) 

From (30) for J* = 0 we obtain that/~,,,o = 0 and this property implies that 

' ~  =o  
gQt,(t) e=o 

identically for any Q(-), while 

8/~[P(.) ,Q(.)]  
,=o--~ (35) 

provides an equation for the mean value Q(t)= <q(t)) of the stochastic 
process defined by (22). Our interest is now in this process in the stationary 
state whose generating functional Z[J,  J*]  is obtained from (23) taking 
the limit t o ~ - o o .  In this limit Z [ J , J * ]  becomes independent of the 
initial condition ao and we define the corresponding functions W[J, J* ]  
and F [P ,  Q] in the stationary state by (27) and (30) with 2 replaced by 
Z. From now on in all formulas concerning the stationary state the limit 
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to---' - -oo should be unders tood even if it is not explicitly indicated. It  can 
be shown that  the functional F [ P ,  Q ]  has the expansion (15) 

T 

F [ P ( . ) ,  Q ( . ) ]  = f ,  dt [ V(P(t),  Q ( t ) ) + / ~ a ( t )  B~,(P(t), Q(t))  
o 

+ Q~,(t) C~,(P(t), Q(t))  

+ terms depending on higher temporal  derivatives ] (36) 

This expression defines the odinary function V(P, Q)  which we call the 
effective potential. In the s tat ionary state the functions G .... and F,.,, [see 
(29) and (34)] depend only on time differences ( r i - r j ) ,  where rl stands for 
b or tj. Concerning notations,  when we use the symbol  ~ we refer to the 
general process defined by (22) with to finite and when we omit  it we are 
considering the s tat ionary state of  the process as explained above. 

We shall Obtain now an expansion of F defined by (31) in powers 
of r/. F rom (23) and (27) we can show that  W has an expansion (l~ 

= I~" o + q I ~  + ..., which implies ~P = F o + r / ~  + . . . .  In order to see this 
we make  in (23) and (24) the change of variables pj ~ pj/~/to obtain 

2[J,J*] = f ~q ~"pexp~ o dt [p,,4~,--H(p, q)-iJ~,q,, + J~p,,] (37) 

with discretized form (qo = ao) 

I ~ ~'0; U+' dpj.,, 7^,= dqi.,, 1-[ 2mI 
/ t =  1 i =  j = l  

x exp ~ J = ~ e - - - -  H(pj ,  q j_ , )  -- iJj.,,qj.,, +J*,pj.~,] (38) 

with H =  Ho + qHl Ho = p~,A~ _ l m' , ~g P~,Pv, H]=pj,  a~,, and all the q 
dependence is explicitly indicated in (37), (38). We put -o~nJ'J*)- 
Ho+iJt, q t , - J*pu  and let p~,=v,(t), q~,=uz(t) be the solutions of  
Hamil ton  equations for (s J ' )  H o" , which are 

�9 . , O H ( o J ' J * ) ( v ,  u )  
uu(t ) ~v z --A,,(n(t))--igi'~(u) v~--J,*(t) 

OH(oJ, J*)(u u)= i 
~ , ( t )  = au,, -v~a"A~+~ (a'g~p) v~vz--iJ~'(t) 

(39a) 

(39b) 
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with boundary conditions U(to)=ao, v(T)=0.  Here vj,(t) is pure imagi- 
nary; putting r~,=iv u, we obtain from (39) real equations. Note that 
(u(t),v(t)) are functionals u ts'J'j, v ts'J'~ of (J( t ) , J*( t ) )  such that 
u = u t ~ 1 7 6  v = O ( J , J * ) ,  i.e., vt~176 and u t~176 satisfies the 
deterministic equation associated with (22), utO.O)= A(utO.O)(t)) ' We make 
in (37), (38) the change of variables (p(t), q(t)) ~ (p'(t), q'(t)) given by 

q,,(t) = uf,(t) + x/~ q~,(t), pt,(t) = v,,(t) = v,,(t) + x/~p~,(t) 

and we keep only the terms contributing to I,vg t~J- I~ o + ~/I~ which will 
determine r ' t~=/~0 + r/F~ (the procedure can be continued systematically 
to higher orders in q). We obtain [calling again (p(t),q(t)) the new 
variables of integration] 

2[J, J*] 

=exp  dt (v~/it, - no"lsJ*ltv, , u) - ~/v~ a~,(u)) 
o 

x~[v(.), u(.)] 
.~[v, u] 

= ~  ~ q ~ P  

(40a) 

x e x p i  p/ ,q~,+~g"V(u)p,  pv+-  ~/'/~t)fv - l . . . . .  u) q~,qv -- L/,,,(v, u) puqv 

x ~(q(to)) (40b) 

with [ f (p ,  q)l~ = f (v ,  u ) = f ( - i t ,  u) for any function f ]  

{l~ , . 82Ho I ~ 1 r~rpO~,~g (u) (41a) U~v (v, u) = t'V"--~--~ I = r~Oi, vA~(u ) - ~  ~# 
oq~, oq, I 

L~,v(v, u) = O2H~ ~ (41b) 
8p u Oq ~ 

Then 

T 

lTVo[J ,J*]=i l ,  d t["  "" u ~ s . s * l , _  o % uu - -  n ~  t v,  u )  ] 

Vv',[ J, J*  ] = - i f,~ dt v~a~(u) + ln ffI[v, u] 

(42a) 

(42b) 
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and/~o is determined by l,f," o through formula (1), where (J, J*) have to be 
expressed as functionals of (P, Q) through (10) with I,}" replaced by ITv" o. 

Using (39), one finds 

6Jl,(r) - ul'(r)' 6J*(r)  iv~,(r) = rl,(r ) (43) 

Comparing with (28), we see that at lowest order Q~,(t)=u~,(t), 
P~,(t) =iv~,(t), and these are the funtional relations of the Legendre trans- 
form between (J, J*) and (P, Q), since (u(r), v(r)) are explicit functionals 
[see (39)] of (J, J*). Using this, we obtain 

F o [ P ( . ) , Q ( . ) ] = - -  dt[P,,Q,, P~,A~,(Q)+~g"~(Q)P~,P~] (44) 
o 

In the next oder P ~ =  Po + r//~ is given by the Legendre transform of 
g,,~tl = gZo+~/~  as 

T 

T't 'I[P(.), Q( . ) ]  = - 17/tll[J, J* ]  + ~, dt[J~,Qu+J~*P~,] (45) 
0 

In this order we can still replace u( t )=  Q(t) and v( t )= - i P ( t )  in the right- 
hand side of (45) (see, for example, ref. 16) and this gives, using (42), 

T 

�9 P~[P(.), Q( . ) ]  = i f, dtv,,aj,(u(t))-lni~l(v(.),u(.)] (46) 
0 

with M given by (40b). We change in this last formula the ?(0) discretiza- 
tion to the midpoint y(~)114. ~71 5,  to obtain (TrL=~,Ll tp)  

1 M [ v , u ] = e x p  - ~  dtTrL(v,u) .K[v ( . ) , u ( . ) ]  (47a) 
0 

KEY(.), u(.)] = f~,lt/'-~ ~q ~p 

7" 

x exp i f, dt [P~,0~,-h(p(t), q(t), t ) ] .  ~(q(to)) (47b) 
o 

i i 
U~v (v, u) q~,q,, + L~,~(v, u) p~,q,, h(p, q, t) = --~gU~(u(t)) p,,p~-~ fl~ 

(47c) 

where the explicit time dependence of h comes through (u(t), v(t)). The 
functional integral (47b) can be calculated as an implicit functional of 

822/82/3-4-27 
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(u(t), v(t)) (see ref. 14, Chapter IX), but here we are only interested in the 
stationary state (to ~ - ~ )  and in the effective potential defined by (36), 
which can be obtained putting P ( - ) =  P = const, Q(. ) =  Q = const in F, in 
which case (we omit ~ since we consider the stationary state) 

F [ P , Q ] = ~ v ( P , Q ) ,  ~ = - T - t o ~ O 9  (48) 

We only need then to calculate (47b), replacing in h given by (47c) 
u(t) = Q = const, v(t) = - iP = const. 

The value of the Gaussian integral (47b) can then be shown to be, in 
the limit z -= T -  to ~ ~ (see Appendix A), 

K [ v ( . ) = - i P ,  u ( - ) = Q ] = e x p  - ~ (49) 
j = l  

where (21 , 2,,..., 2,) are the eigenvalues with positive real parts of the 
(2n x 2n) matrix R with real elements (1 ~</~, v ~< 17) 

R/,v = 0; R..,, +,, = 6~,v; "',,+..,'R _~-,./'~ R,, +~,. ,,+ v = 2q L ~  (50a) 

U/. ,=U(t I+(LrG-IL) ,  .... F.,,. = (G-  1L).., E~,",,)=~_(L/,,,-L,,/,) (50b) 
- /IV 

where L r is the transposed matrix of L, G the matrix with elements g/'V, 
and G-~ its inverse. The matrix R corresponds to a quadratic Hamiltonian 
and consequently its 217 roots are { ___2j, j =  1 ..... n}, where we repeat the 
root if the multiplicity is greater than one. Moreover, R is real and this 
implies that the sum Z 2j is real. From (45), (46), (48) we obtain in the 
stationary state for constants P(. ) =  P, Q(. ) = Q the result 

j = l  

where the eigenvalues ~j depend on (P, Q) through the dependence of the 
matrix R on ( v ( . ) = - i P ,  u ( . ) = Q ) .  We can now write down the final 
result up to O(q) for the effective potential V(P, Q) defined by (36) using 
(42) (we put there constants P and Q), (49), and (51). We obtain 
V(I)(P, Q ) =  Vo + ~IV l , with 

Vo(P, Q ) =  P . A . ( Q ) -  �89 g"V(Q) P.P~ (52a) 

( ) Vt(P,Q)=P,,a/ , (Q)+�89 T r L +  }-" 2j (52b) 
", j = l  

which are formulas (14) and (15) of Section 1. 
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3. MODELS PRESENTING A WEAK NOISE TRANSIT ION 

We use here the ideas of  the previous section to study a simple class 
of  systems which exhibit, as we shall see, transitions induced by weak 
noise ('3) which are a consequence of an extreme sensibility to noise of  the 
models. We consider as a pro to type  model a deterministic system of two 
variables (q~,q2)  invariant under the t ransformations q~- -+-q~  and 
q2 --~ --q2 separately, 

(1, = --),q,  -o~q2 q, - vq~ = B,(q~,  q2) (53a) 

(12 = --lzqz - trq 3 + 6q~ q2 - B2( q, , q2) (53b) 

where (ct, p,  a, y, v, 6) are positive constants. This system has an unique 
at t ractor  (q~ = 0, q2 = 0) and all solutions q~,(t) ~ 0, t --, ~ ,  p = l, 2. 

We add noise to this system, putt ing 

(11 = B l ( q l ,  q2) + (Plal)v2 ~ , ( t )  (54a) 

02 = B2(ql ,  q2) + ( / / 0 2 )  1/2 ~ z ( t )  (54b) 

where ( ~ ,  ~2) are independent white noises with mean and 6-correlated, 
( (~,(t') ~,,(t") ) = 6~,v 6(t '  - t" ), ~I <{ 1 is a small parameter  measuring the 
intensity of the noise, and (a~ ,a2)  are positive constants. If  all the 
parameters  involved are of  O(1 ), the effective potential  is 

_9 

V(p, q) = ~. [ ,,B,,(q) - �89 + O(q)  (55) 
tL= 1 

and Eqs. (9) show that  the mean values are q~, = 0 (there can be no correc- 
tions of higher orders in r/, due to the symmetry  q~,--+ -q~,  of the problem).  
If we look at Eqs. (54), we see that  an interesting situation can arise if 
the parameters  p and a are of O(r/). Putt ing p = q 2 ,  a = q f l ,  a ( q ) =  
-(2q2+flq3,_),  we can write Eqs. (54) in the form (we put 6 = 1  in B2 
without loss of  generality) 

(11 = A l(q) + (qa,)l/"- ~ l ( t  ) (56a) 

(12 = A_~(q) + rla(q) + (r/a2) l/ '  ~_,(t) (56b) 

with A,  = B , ( q , , q , _ ) ,  A2=q~q,_ ,  and it is now necessary to calculate the 
effective potential  up to 001).  We obtain 

V(p, q) = Vo(p, q) + t/Vl(p, q) + O(I/-') (57a) 

2 

Vo = ~ [ p, ,A, , (q)  -- �89 (57b) 
t t ~  I 
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Vl =p2a(q)+V,(p, q) 

Pl = �89 L+Rl(p,  q)+22(p,q)]  

(57c) 

(57d) 

Here L/,~ = O,,A/,(q) is independent of p and (el = 1, e2 = - 1) 

2/= Cj= B(p, q) + ej (B 2 - 4 C )  I/2 

B(p, q) = Tr(GU) - 4  det(G/Z')  

(58a) 

(58b) 

C(p, q) = det(GU) (58c) 

Here G, U,L, and /,to~ are 2 x 2  matrices with elements g"", U.v= 
f : ( l )  L/,,,, and t ~ ~ (LTG-IL)/,v+ vl, v, ~_(LI,,,-L~/,), respectively [see (50b)]. One 

has 

g""=a .~ L,v=OvA,. U~l~-~.p~O,vA~(q) (59) 
- - p  ~ p v ~ - - I t  v - -  

We can check that ~IV-Vo+qV~ vanishes for p=O and also that the 
equation 

O~l~V =At(q)+O(q)=O (60) 
OPl p=O 

implies ql =0  since Al(q) vanishes for qt = 0  and arbitrary q2- According 
to the discussion in Section 1, [see (9)], this implies that the mean value 
in the stationary state is ( q ~ ) = 0 .  The second equation (9), which is 

O~IIV(P' q) p=O Op: = 0  (61) 

where we should now put q~ = 0, will then determine the mean value (q2) 
in the stationary state. But here a new problem arises: one has that the 
eigenvalue 2z(p, q) evaluated at (p=0,  q~ =0)  vanishes for arbitrary q,_. 
Due to this one has simply to omit 022/0P2 in (61) [see (57)], which then 
reduces to 

I 1 021 ] =0  (62) 
A2(ql = 0, q2) +q  a(ql =0, q2) +~0-~2 p=O.q,=O 

The reason for this prescription is that the contribution (2~+ 22) to (~)V in 
(57) has its origin in formula (49), which is obtained by evaluating R in 
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(47b) for constants (v( . )=  - i p ,  u ( . )=q )  and in the limit T-to=r~ oo. 
If we evaluate K for finite ~ we obtain, as shown in Appendix A, that 

_K[v(-) = -ip, u(.)=q]=exp[-�89 21(p,q),22(p,q))] (63) 

where F depends on (p, q) explicitly and through (21(p, q), 22(p, q)). When 
r ~  ~ one has R ~  e x p [ -  �89 t +22)], which gives the contribution 

lim ( -  l l n  J~[v(.) = - ip ,  u(-) = q ] )  =~  (21 + 22) (64) 
T ~ O G  ~" 

to the effective potential. The function F for finite r has the property that 
it is invariant under the transformations 2 ~ - 2 ,  and 22--*-22 
separately and we can see in (64) that this property is lost in the limit, but 
one has to take it into account in the calculation of Eq. (61). When r is 
finite the invariance 2j--* - 2 j  tell us that F for small 22 has the form 

F =  a(p, q, 2,, r) +22b( p, q, 2,, 3) + O(2~) (65) 

The contribution of R to the derivative O~'V/Opz in (61) is 

( 1 0  ) ( l lOF~ 
l i m  - r0--~_, In ~" = l i m  ~rr Fap2J (66) 

where we have to put p = 0, qt = 0. Since 22(p, q) and 22(022/apz) vanish at 
p = 0, q, = 0, we see from (64) that in the calculation of OF/Op2 we can put 
22 = 0 from the beginning and then (66) gives 

(1 1_ OF'II 102, 
l i rn  ~r rOp2jl,=O.q,=O- 2 0p2 (67) 

which is the prescription given after Eq.(61) and leading to (62). This 
prescription is general and not restricted to the case of two variables dis- 
cussed here and it should be used when an eigenvalue vanishes. The reason 
is that it is a consequence only of the invariance of F under 2 j ~  -2 j .  We 
come back now to Eq. (2), whose solutions will be the mean values 
(qz)  st= q2 of r0etastable states in the sense of Section 1 and which reduces 
in our model to [Al(ql =0,  q_,)=0] 

E ~ ;] qq2 -(2 + flq~_) + 2(? ~-~q~ = 0 (68) 

This equation can predict mean values cj z :/: 0 of O( 1 ). We can understand 
why this happens by looking directly at Eqs. (6). Asymptotically for large 
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times Eq. (56a) tells us that q~(t) --, 0 and if we assume that q,_(t) tends to 
a mean value #2 we can neglect in B,(q) the last term and then the mean 
value of q~(t)'- in the stationary state is 

(ql( t)2)st  - PI@, 
2(y +ocq_~) 

In a first approximation in (56b) we can replace q2q2 by (q~)Stq2 and 
(q2(t)3) st by -3 q2, which gives Eq. (68). What has happened is that on 
average the term q~q2 dominates ~.q2 and the coefficient of the linear term 
in q2 becomes positive, advancing the pitchfork bifurcation arising for 
; t<0.  Solving (68), we obtain 

_, [-(y#+~)= G,-2~y] '/~ y#+aa 
q~= ~_-T~ + 2 ~  J 2=fl (69a) 

which tells that we need a~ > 22y in order to have bistability, i.e., two peaks 
in the stationary probability for q2. We given as an illustration the numeri- 
cal value of c]2 for tz, =2 ,  2 =  1/2, 0 c = f l = y =  1; we obtain from (69) that 
el_, = +0,  52. If we take ct=0, we obtain now from (68) that 

-, gl--22Y 
q~ (69b) 

2yfl 

and with the same values for the other parameters has now q,_ = + 1, 22. 
These values are independent of the value of t /~  1 and we see then 

that the system (53a), (53b) in the region of parameters # = O(t/), g = O(q) 
exhibits a noise-induced transition. The fluctuation around the metastable 
states q2 given by (9) will be controlled by tr 2 in (54b) (see Appendix B) as 
well as the escape time, which is of the form exp(a/tr2), with a > 0 of O( 1 ). 
We have done numerical simulations of the models presented here and of 
variations of these models which involve the same mechanism and produce 
similar transitions. These simulations confirm clearly the predictions of the 
theoretical analysis and go in some cases beyond the expected region of 
validity of the theory. Due to their special interest they will be represented 
in a fothcoming paper. We have also been able to calculate the stationary 
probability for the models of this section in a reasonable and controlled 
approximation. I11 We remark that if we consider the inhomogeneous 
problem, changing q2(t) to a field ~2(x, t) and adding a diffusion term t 19-_,1~ 
V2~b2 to Eq. (56b), we can expect to have a real phase transition in the 
thermodynamic limit for o" 2 sufficiently small and if the dimension of x 
space is d~> 2.122-24) 
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Our original system defined by (4) can be interpreted if we decouple 
Eq. (54a) from (54b), putting, for example, B1 = --yql and a 2 = 0  as a pro- 
cess q2(t) in the presence of a nonlinear colored noise ql(t)  2, where q~(t) 
is the Ornstein-Uhlenbeck process (see Appendix B for a discussion of this 
point). For processes with colored noise the possibility of noise-induced 
transitions has been considered by studying approximations to the station- 
ary probability. (25~ We remark that the appearance of the mean value 
q2 :~ 0 given by (69) in the model defined by Eqs. (56) is the analog of the 
Coleman-Weinberg effect in field theory/~5) 

The results presented in this section must be analyzed now in relation 
to our general interpretation of the effective potential as a tool to find 
mean values of metastable states (see Section 1 and Appendix C) and our 
method of calculating this function. As we explain in Section 2 and 
Appendix C, the construction of the effective potential is done by per- 
forming a translation of variables [ see (C6)] in the functional integral (37). 
This translation will be here given by (C6) with (r~~ j , ) ,  ",," to)tj~ , j , ) )  
constant solutions of Hamilton's equations of the Hamiltonian 

/-)(o J'J' '  = H o ( p ,  q )  - -  J , * P , ,  - J , ,q , ,  (70a) 
9 9 I ? 

/-Io(p, q) = Pl Al(q) -- �89 py + P2qY q2 -- ~_azP;_ (70b) 

(ol 0 with A~(q)=B~(q) given by (53a). We recall that (ru ( 0 , ) = 0  and 
q, = u~~ 0)) should be an attractor of the deterministic system 4~, = A(q), 
i.e., a solution of 

A ~(q) = - ) ,q t  - o~q~q] - vq~ = 0 (71a) 

Adq) = q~q2 = 0 (71b) 

The solutions of (71) are ql = 0  and q2 arbitrary, which means that 
q, = A~(q) has no attractors and we cannot continue with the procedure. 
The way to interpret the calculation is to keep all the parameters in B2(q) 
given by (53b) of O(1), i.e., we do not make the separation B2(q)= 
A2(q)+rla~_(q) indicated in (56b). The deterministic system B~,(q)=0 
which replaces now (71) has one global attractor (q~ = u~~ 0)---0, qz=  
uC~ 0 ) =  0) and we can make the translation. The effective potential will 2 ~, 

be 

B 1 ~ q ( T r / 7 +  ~.] +)~)  (72) I~)V(p, q )=p , ,  , , ( q ) - ~ a ,  pT,+ ~ 

with Eu,=OvB~, and ().,, 2z) depending on (Bl(q), B~(q)). It is at this point 
that we consider the situation when the parameters p and tr of Bz(q) 
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become of O(r/), putting a = v/)., ~r = r/fl [see before Eq. (6)]. Then B2(q)= 
A2(q) + r/a2(q) and Eq. (72) becomes identical with (57) up to O(1/) because 
in the term of O(r/) in (72) we can replace B,_(q) by A2(q) and then 
(/S, 2~, ~-2) become (L,).~, )-2) in (57). We see then very clearly in this dis- 
cussion how the new metastable states appear in the effective potential. 

APPENDIX A 

We shall calculate here the functional integral (29b) for K [ v ( . ) =  
- i P ,  u ( . )=  Q] evaluated for constants v(t) and u(t) as indicated. Then 
becomes a function K(P, Q, z = T -  to) given by (29b), where now h has no 
explicit time dependence and is given by 

i ,,~ i U(,)(_ip ' Q)q,,q~+L,,~(-iP, Q)p,q,.  (A1) h(p, q )=  - ~  g (Q)p/,p~--~ _/,~, 

Doing the Gaussian integral over ~p in (29b), we obtain 

K= f~,(l/2) ~q exp ( -  f,~ dt.W(q, dl)).J(q( to) ) (A2) 

where @q has the discretized from [see after Eq. (24) for the meaning of e, 
N, and q,,.j] 

tl 
N+ I t-It, = l dq,,.i (A3) 

~q  = I-[ [(27re)" det g""(Q)] i/,_ 
i = l  

and ~ is the Lagrangian (g~,,, is the inverse matrix of g'" and sum over 
repeated indices is to be understood) 

l " L " U ~ t l  ~ = ~g,,,,(q,,- ,,~q~)(q,,-Lvaqa) + (A4) 

We calculate (2), putting q,,(t)=%(t)+q~,(t) with a(t) satisfying the 
Euler-Lagrange equations for Za with boundary conditions %(to)=0,  
%(T) = q,. With this change of integration variables (A2) becomes 

(A5) 

,A6, 
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where Nq' stands now for 

i1 t 1 N I-]~, = t dq,,.i 
~q '  = [ (2e)" det g""(Q)]  i/2 ;= __I-I 1 [ (2ne)" det g""(Q)]  1/2 (A7) 

Since ~ is a quadratic Lagrangian and (%( to ) )=  0, %, (T)=qt , )  the action 
in (A5) is 

o d t . ~ ' ( ~ , d ) = ~ f l ~ , ( T ) q , , ,  f l , , ( t )=  Od,,(t) (A8) 

One has that the conjugate momentum fl~,(T) will be here linear in q and 
of the form 

f l , , (T)  = �89 q,, (A9) 

where M,,,(r) has a finite limit M~,,, when r---, oo. Then in (A5) we can do 
the Gaussian integral over dq ( I  does not depend on q) and we obtain 

K =  (2n)1"/21 
(det Mm.)1/2 I(P,  Q, r) (A10) 

The functional integral I in (6) is calculated in refs. 14, 18, and 26 and has 
the value 

1 
I =  [(2n)" det J*'~(to)] 1/2 (A11 ) 

where the (n x n) matrix J~'V(t) is such that for fixed ~ the quantities J~'=(t) 
satisfy the Euler-Lagrange equations of ~ with boundary conditions 
J J " ( T ) = 0 ,  J 'J '~(T)=-g~'~.  Put  "1~1 xF, ( t )=J* '~( t ) ;  _~,+,,x "1=) =J~'~(t); I t =  l ..... n; 
~ =  1,..., n; one has that the n vectors x ~ with 2n components  x ~ l =  
(xtl ~1 ..... x{~],l) satisfy the linear equations (here we shall explicitly indicate 
sums over indices) 

2n 

~(~1= ~ R v I~1 i t =  1 ..... 2n (A12) 
I ' m  I 

where the (2n x 2n) real matrix R is given in formula (50a) of Section 2. 
The eigenvalues of R are (21,).2 ..... ).,,, ).,+1 = -) .1 ..... ).2,,= -2 , , )  with 
Re21>~ .-. ~> Re ).,,1> 0 since the linear equations (A12) come from a 
Hamiltonian system. We assume that we can diagonalize R (if this is not 
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the case, one  needs some mino r  changes  in the a rgument ,  but  the final 
result will be the same) by a change  of  variables 

2 n  

x~,= ~ ~,,vY,, (A13) 
v = l  

which reduces Eqs. (A 12) to )~i, = 2 .  y .  with solution y . ( t )  = r~, ~ exp [ 2.( t - t o) ]. 
where r.-~=~ are initial condi t ions  at t = t 0. One  has 

2 n  

x~,~l(t) = ~ - i ,v- .  ?: rl=le;'"~'-'~ (A14) 
v = l  

and  the u n k n o w n  vectors  r ~ =  (r] =~ ..... "~=)~2., will be de termined by impos ing  
the b o u n d a r y  condi t ions  x~=I (T)=S  I=~, with R~=~-t/ x I~1 ~ .  - - v ,  - -n+ i t=  --g"=, f l =  
1 ..... n. Since for ~ fixed the vectors  ~ = ) = ( ~  ...... ~._,,.=) are eigenvectors 
of  R, 

2 n  

R., ,~= = 2=~i,=; / t = l  ..... 2n; ~ = 1  ..... 2n (A15) 
v = l  

one can choose  

~.= = fu=(2=); ~..,,+= = f~,=(-2=);  ~ = 1 ..... n (AI6 )  

The equat ions  for the vectors  r ~ are (r  = T - t  o) 

S(=) Z ~ r ( ~ )  ~2~ ' r  . = . . ._ , ,  ~ (A17) 
v = l  

with solut ions (p = 1,..., n) 

detO:tl) ~:,l,-ll SC=l {t,,+l), ,{t,,i,{~,,+ll. ,{12,,~) (A18) (a) -- 3.,~ r ~ ' " "  "~ ' ' . . . . . .  

r .  = e  , det(~.,,) 

I=) _ a.~det({ t~l ..... {I.), {~,,+~ ..... { i , , + . - ~ ,  Sl=l, {~ , ,+ .+~ ..... {~-',,I) 
r , ,+ .  - e de t (~ . . )  

(A19) 

where the no ta t ion  det(y  tt} ..... yt2,,}) means  the de te rminant  of  the (2n x 2n) 
matr ix  whose co lumns  are the c o m p o n e n t s  of  the vectors  yt~}= 
(y~l  ..... ..z."t~h, and  d e t ( ~ . ~ ) = d e t ( ~  ~1 ..... ~-'"~). We see then that  

-(~):~ 2._  ~, - 2 . ,  2.+ 2,,) .~=) t~ 2 . _  ,2 . .2~,+~ ..... 2 , , ) = . .  ~..~ 

(A20) 
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-t,) - I~)exp(_2,r) ,  -t~) = ~l,~ exp(2F, r), where we used (A.16). Putting G, =%, ",,+J, -,,+, 
/1 = 1 ..... n, we can exhibit the z dependence explicitly and from (A14) we 
obtain 

J"~(to) -xl ,~ ' ( to)= ~ ,,,~ ,~x'~la - z ' * "  _ (A21) 
v = l  

From (A16) and (A20) we see that JU~(t)=-x~,l(t) is invariant under the 
transformations 2 v ~  - ) . ,  for each v separately and this is then afort iori  
true for J~'~(to), a property used in Section 3. Using (A21), we can calculate 
det J~'~(to), which has the form 

det J"V(to) = ~ Bj(P, Q, {2i(P, Q)} ) exp rSj (A22) 
J 

where S j=  i t  + 22 + "'" + 2n is a sum of n eigenvalues 2j each of them 
chosen from the set (2t ..... 22~). It is simple to see that if in Sj an eigenvalue 
appears two times, the corresponding coefficient Bj vanishes. We see then 
that when z ~ m the dominant term term in (A23) will have the form 

lim d e t J U " ( t o ) = B ( P , Q ,  {2,(P,Q)})exp(z ~ 2j) 
r ~ c r  " j = l  

(A23) 

which implies formula (27) in Section 2. The sum 5Z 2j is always real, since 
if (2 + ig2) is an eigenvalue of the real matrix R, then ( 2 -  iO) is also one. 

APPENDIX B 

We derive here an approximate expression for the stationary prob- 
ability Pst(q2) of qz in the model defined by Eqs. (43). We remark that 
(43a) tells that ql(t) tends to zero in a time of O(1) and we can neglect 
there the cubic terms q~ and replace (43a) for times t > O(1) by 

41 = - q l ( ?  + aq~_) + (tlal) 1/2 ~l( t) (B1) 

The variable q2 has slow vaariations in an interval of time of O( 1 ) [this is 
seen in (43b) slnce q~ is O(r/)]. We can conclude from (B1) that for times 
t > O( 1 ) the process ql(t)  is approximately in the stationary state and that 
it can be considered as an Ornstein-Uhlenbeck process with correlation 
time [y + 0cqE(t) 2] - l .  Then in this regime we have 

( q l ( t ) )  = 0  and ( q l ( t ) 2 )  _ tlal 
2[y + ~q2(t) 2 ] 
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We can now use this in (43b), since in a first approximation we can 
replace ql(t) 2 q2(t) by (qt(t) ~-) q2(t), which gives then 

dl,_(t)=t/[(2[y+~tq2(t)2]-2)q2(t)-flq3]+(t/a2)m~,_(t) (B2) 

with stationary probability (N is a normalization factor) 

P~t(q2) = N exp -- - -  V(q,_) (B3) 

V(q,) = -- 2 f:-' [ (2(), O ' 1 _  + ~xq2 ) +2) q- f lq  3 ] (B4) 

Equation (B3) shows that the fluctuations and the escape time from a 
metastable state are determined by a2 as stated in Section 3 and the 
maxima of Pst(q2) [minima of V(q2)] will be determined by V'(q2)=0, 
which coincides with Eq. (55). 

We consider now the case in which we decouple Eq. (43a), putting 
~=  v = 0  in B,(qt, qz) [-see (40a)]. We have then a problem of a variable 
q2(t) in the presence of nonlinear colored noise. If we put o ' t=),  -~ the 
system reduces to 

ql = -) ,q,  + ), ~ ~t(t) (B5) 

q2 = --t/(2q2 + flq~) + q~q2 + (t/a2) ~/'- ~2(t) (B6) 

which is of the form treated by San Miguel and Sancho t271 and also 
considered in ref. 9, Chapter 8 (general techniques useful fo problems with 
nonlinear noise can be found in ref. 28). Using the results in ref. 27, we 
obtain a small-t/ approximation for the stationary probability Pst(q2), 
which is (except for a normalization factor) 

1 ( ~q~Ix ()'/2-2)'~---flx3+---(t/)'/4)x)~ (B7) Psi(q,) = , exp 2 
- cr 2 + (t/),/2) q3 a2 + (t/),/2)x-" / 

The equation for the maxima of this stationary probability gives in lowest 
order in t / an  equation for the most probable values which coincides with 
(69b) when cr~ = ),2, and Pst(q2) then has two peaks for ),/2 > 2, which was 
the conclusion obtained from the effective potential. 

APPENDIX C 

We discuss here the equivalence of the definition (36) of V(P, Q) with 
the one given in the Introduction. We recall the notation we have been 
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using: for any quantity S depending on the source (J, J*)  and other 
parameters {a} we write S [ J ( . ) ,  J*(-) ,  {a} ] with square brackets when 
the sources are time dependent and S(J, J*, {a}) with round brackets 
when they are constant vectors. The dependence in {a} will often be 
omitted or limited to the relevant parameters. We have that Z(J,  J*; ~) 
given by (10) has the functional integral representations (3) and (37) for 
Jr,(" ) = J~, = const, J* ( - )  = J *  = const. We make again in (37) the displace- 
ment of variables q,,(t) = 5j,(t) + ~ q~,(t), pp(t) = g~,(t) + v/-~p~,(t), but 
now (p~, = g~,(t), q, = 5~(t)) are solutions of (39) with the same boundary 
conditions but with constant sources (J, J*). We define the real 
Hamiltonians 

/-7o(P,q)=iH~ZJ*)(p --iP, q)=P, ,A, , (q)  - ~  ,,,' = _~g (q) P~,P,, (C1) 

[~I(J,J*)tp o , , q ) -  iH(oa'S*)(p = - i P ,  q ) =  Ho(p, q)--J,*P,,--J, ,q, ,  (C2) 

Putting ~t,(t) = i5~,(t), we have that (P,,(t) = ?,,(t; J, J*),  q,,(t) = 5,,(t; J, J*))  
are solutions of Hamilton's equations for/4(o J's*l, which are 

q,, = A,,(q) _gm'p ,  _ Jr* (C3a) 

15,, = - p  ~O ,,A~( q) + �89 g~P( q) ) P~P p + J~, (C3b) 

When J = J* = 0 these equations admit P = 0 as an invariant manifold and 
the previous solution is (?~,(t; 0, 0) =0,  tT~,(t; 0, 0)) with 5~,(t; 0, 0) satisfying 
the deterministic equation 

O,tT~,(t; 0, 0) = A,,(zT,,(t; 0, 0)) (C4) 

for the boundary condition ~,(to;0, 0)=c%,. Then for each attractor b, 
A~,(b) = 0, of the deterministic system, and if ~o is in the basin of attraction 
of b, the solution tT~,(t; 0, 0) will be, after a transient, infinitesimally near b 
and spend there an infinite time in the limit t o --* - o o .  The duration of the 
transient will be determined by the eigenvalue with the smallest real part 
of the linearized deterministic system at q = b .  At least for (J, J*) in a 
neighborhood ~) of (0, 0) we shall have a constant solution (r~~ J*), 
aco)r j . ) )  for (C3) which reduces to 

. . co} / l=O,J ,=O)=O,  (o) _ j ,  up ( J - O ,  =O)=b~  (C5) 

for vanishing sources and once again the solution (l~,r't~ j , ) ,  %=~~ J*)) 
will spend an infinite time at the constant solution (t~,"~ J*), u~,(~ j , ) )  
in the limit t o ~ - r162  T--, + ~ ,  i.e., r ~ + oo. The region ~2 in the space 
(p, q) is defined by (p =.to)~i% ~,J, J*), q = u~~ J*)) for (J, J * ) ~ t .  Due to 
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this the displacement of variables mentioned above in (37) can be effec- 
tively replaced in the calculations with a constant translation 

pl,(t) �9 ~o) , _ .(o,,. j . ) + x / ~ q ~ , ( t  ) (C6) = - t r .  ( J , J * ) + x / ~ p / , ( t ) ,  q . ( t ) - . .  ~.,, 

writing 

Z(J,  J*; v )=exp  (~ W(J, J*; r ) )  

l&(J, J*); r) = l.Vo(J, J*; r) + r/g:l(J, J*; r)) + -.- 

we obtain the analog of formulas (40)-(42) with (v(.), u(-)) replaced by the 
time-independent vectors (-ir{~ J*), u(~ J*)). Putting l~(J. J*; r) = 
r if'( J, J*) when r ~ -Go, one has instead of (42) the formulas 

I~o(J, J*)= -/~o(r(~ J*), u(~ J*)) 
+-i,I*'(~ ('J, J*)(J  + Jl, u~ ~ J*)) (C7) 

ff.,(j, j . ) =  .(o),. j . )  a.(uiO)(j, j . ) )  
- -  I l t  ( t . l~  

+ 1 In/~(r(~ J*), ul~ J*)) (C8) 
l" 

The calculation of Co(p, q) requires us now to take the Legendre transform 
of ff'o(J, J*). For this we have to invert 

afro(J, J*) afro(J, J*) 
aJl, q"' aJp Pl, (C9) 

in order to express (J, J*) as functions of (p, q). Equations (C9) are 
= _lo~j j . ) ,  q. =u~O)it(j ' j . ) ) ,  equivalent to saying that at order zero (p .  . .  ~ , 

since these quantities are solution of 

a/to(P, q) alia(P, q) 
ap. =Ji*, aq. - J .  (CIO) 

and the inversion can be done in the region ~l and ~2 introduced 
after (C5) with (3, J * ) ~ ,  ( P , q ) ~ 2 -  From Vo(p ,q)+f f '0 ( J , J*)=  
J . q .  + J p p .  we obtain now using (7) and (C10) that 

Vo(p, q) =/to(p, q) 

which is (52a). Instead of (5) we have now 

ct)Vt(P, q ) =  - ( " f f ' l ( J ,  J* )+J i ,  q .+J l*P .  

(c11) 

(c12) 
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where (~)gz = ff.o+r/ff, ~ is given by (C7)-(C8) and in the right-hand side 
of (C12) we can still replace r(~ J*) by p and u(~ J*) by q [see (46)-I. 
Since the calculation of .~" is the same as in formulas (47)-(49) we formally 
obtain (52b) for Vt( p, q), thus showing the equivalence of the two defini- 
tion of V(p, q). Notice that the eigenvalues {Zj}_ are those of the linear 
system determined by the quadratic Hamiltonian h(P, Q ) =  ih(p = - i P ,  Q) 
as stated in Section 1 [see formulas (16) and (47c)] since the Lagrangian 
ffa associated with /~(P, Q) is 0 ~ = - L a  [see Appendix A, formula (A4)]. 
In order to obtain (l)U](q)= Uo(q) + llU](q), which is the Legendre trans- 
form of (l)~i~(J)=(l)ff'(J, J * = 0 ) ,  we remark that putting J * = 0  in (C3) 
gives rI~ 07 =g~,,,(u(~ 0)) for the constant solution and consequently 
(l)U(q) = (I)V(Pl, = gl, v(q)A,,(q), q), which is formula (13). 

We remark here that the result for (llV(p, q) [formula (52)] is the 
same independent of the attractor b appearing in (C5) and in fact we do 
not need to know explicitly this attractor to arrive at (C2). We recall that 
in Section 1 we defined the function U(q) as the Legendre transform of 
~ ( J ) - g z ( J , J * = 0 )  and using definition (5) one can easily show that 
(02~(J)/OJ~ OJt~) is a positive-definite matrix and ~(J)  a convex function. 
On the other hand, we can see that the inversion of O~(J)/OJ~, = q~, up to 
first order in q is determined by the inversion of O#o(J)/OJ~ = q~,. The argu- 
ment is the same one just used for I,V(J, J*) and we conclude that for J in 

�9 (o),, 0) and will belong a region ~] containing J = 0 we can invert q~, = %, ~,,, q 
to a region ~_ = {q: q = u(~ J e ~1 } containing the attractor b = u(~ 
In fact, the property that the lowest order determines the inversion 
problem can be proved to any order in r/. This procedure, which corre- 
sponds to our calculation, will then generate a function U(q) which will be 
convex and have the same analytic form in each of the regions ~2 (each 
one of these regions corresponds to an attractor of the deterministic 
system), but the global function will not be convex. A function U(q) which 
is convex everywhere can be obtained with the definition 

U ( q )  = s u p  ( J  . q  - ~ ( J ) )  (C13) 
J E R" 

This function will coincide with U(q) in the perturbation expansion if )$,(J) 
is everywhere differentiable and this will not be the case for ~o(J) if the 
deterministic system has more than one attractor (an example will be given 
in this appendix). The function U(q) will be continuous, but in general not 
differentiable at the mean values of the metastable states and it will satisfy 
a large-deviation property for the random vector 

!;T 
y(r) = - dt q ( t ) ,  r = T - -  to 

t0 
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. . . . . . . . . . .  l o  

,,-,.?. :qo ' '  ,o, (.~ (J) 

/ Jo .......... -----',;-," 

[ -J 

Fig. 1. Plot of the equation f ( q )  = J. 

when T-- ,  m.ml Moreover, U(q) will take its minimal value at the true 
mean value of the stochastic process, which in general is different from the 
mean values of the metastable states. In order to illustrate this point we 
consider again the simple example of Section 1, Eq.(18), with B(q)=  
l t q - q  3. For this model, Eqs. (C3), which determine the constant solution 
um)(J) for J * =  0, become 

f ( q )  = B(q)  B ' (q)  = J (Cl4) 

The function )Vo(J) is here 

)Fo(J ) = -- �89176 2 + Ju(~ (ct5) 

and in Fig. 1, which plots f (q) ,  we can see that O)~,o(J)/OJ=q, which is 
equivalent to q = u(~ can be inverted in two regions corresponding to 
the two attractors +-x/% 

For the attractor x /~  we have that for J e ~ ~- = [ - J o ,  ov ] we can 
solve (C14), giving q = um+l(J) e ~ +  = [q0, ~ ] ,  and for J ~  G.@ 1 = [ - -  OO, J o ]  

we obtain q = u(~ ~ ~ = [ - ~ ,  - q o ] .  One has u(~  0) = ___v/~ and 
Uo(q) will be a convex function defined in each region ~_~ and having there 
the same analytic form 

1 ") Uo(q) = ~_B(q)-, q e ~ , f  (C16) 

We recall that )~(J) in (C13) is defined by (5) in terms of 2 ( J ;  r). This 
function has a functional integral representation obtained from (23) for 
J * =  0 after doing there the Gaussian integral over p~,(t). One has 
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1 T T 
~(J;r)=I~qexp[--~(lltodtgu~(~tu-B~,)(ft~-B~)-J~,Itodtqu(t))] 

(C17) 

N+ l I-Iu dqu.i (C18) 
~q  = I-I [(2net/)" det gU"(q~_ i)] 1/2 i = l  

In the simple model we are studying now we have then 

$(J) = lim r/2(J, r) (C19) 

~(J,v)=f  ~ q e x p ( - ~ S [ q ( ' ) ] )  (C20) 

~r = ~  dt ( q - B ) 2 - J  dtq(t) (C21) 
o o 

In order to generate an expansion in r/ for if(J) we have applied the 
method of steepest descent to (C19) looking for a constant solution ~(J) of 
the Euler-Lagrange equation of the action ~r )] which minimizes 
~r In the present case we have from (C21) that 

~ ' o ( S )  = - � 8 9  ~ + S~(J) (C22) 

with 

~(J )=u~) (J ) ,  J > O ,  ~(J )=u~) (J ) ,  J < O  ( C 2 3 )  

This is not what we have done in our calculation, since we have taken 
?l(J)=u~l(J) for J e ~ - = [ - J 0 ,  oo ] and O( J) = u(~ J) for J e ~ i - =  
[ - ~ ,  J0] (see Fig. 1) and this is why we have lost global convexity for 
Uo(q) [see (C16)]. In fact when we choose O(J)=u~)(J)  for J e ~ "  we 
have to interpret this choice as equivalent to suppressing the attractor at 
( - v / ~ )  [the same with the obvious changes with the other choice u ~ ( J ) ] ,  
but this was a good thing to do for our purpose of obtaining a differen- 
tiable U(q) around the values of q corresponding to metastable states (see 
ref. 30 for a discussion of this point). The choice to obtain a globally 
convex U(q) through formula (C13) is to calculate #o(J) using (C23). In 
this case formula (C22) is replaced in (C13) and the calculation gives now 

Uo(q)=�89 2, q<.-v/-~, q>f,r O'o(q)=O , q~[-x,/~,x/~] 
(C24) 

822/82/3-4-28 
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This function Uo(q) is now convex everywhere, in contrast to (C16), but it 
is not differentiable at q =  +x/~- These considerations explain where 
convexity is lost in our calculation. 
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